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NOTATION
Se* Estimated strain erergy
T Ultimate tensile strength
€ Ultimate elongation
Yield strength
Se' © True strailn energy
n Strain hardening factor
Tf' True fracture strergth
ef Elongaticn at fractu.e
I Intensity of cavitation damage
‘FRate of volume loss V
Ae Area of erosion
Se Strain energy
r' fCorrelatiorn. factor
a Ampiltude
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SUMMARY

Detalled investigations with a magnetostriction apparatus
were carried out to determine the cavitation damage résistance of
eleven metals in distilled water at 80°F. The cavitation damage

resistance is defined as the reciprocal of the rate of volume loss

. for a given metal. Among the mechanical properties investigated

(ultimate tensile strength, yleld strength, ultimate elongation,

Brinell hardness, modulus of elasticity and strain-energy), the

“most significant property which characterizes the energy absorblng

~capacity of the metals, under the repeated, iIndenting loads due

to the energy of cavitation bubble collapse in the steady state
zone, was found to be the fracture straln energy of the metals.
The strain energy is defined as the area of the stress-strailn
diagram ﬁp to fracture. The correlation between the strain en-
ergy and the reciprocal of the rate of volume loss leads directly
to the estimation of the intensity of cavitation damage; this
intensity varles as the square of the displacement amplitude of

the speclimen. All these concluslons are limlted to the steady

state zone of damage.

INTRODUCTION

113
Since the work of Parsons (1) in 1919 aand Fottinger (2) in
1926, there have been many attempts to characterize the cavitatlon

damage resistance of materials by a single, commo:n mechanlcal

'property.' Although Honegger (3), in 1927, di1d not find any cor-

- relation between hardness and erosion resistance, Gardner (4),
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in 1932, found that the hardness of a metal was the principal
property in determining the resistance to erosion. Many more ref-
erences may be cited to btring out similar controversies with re-
gard to other mechanlcal properties such as yleld strength, ulti-
mate tensile strength, ultimate elongation and modulus of elasticity.
One can get a clear plcture of the magnitude of the conflicts in

this area from some of the excellent review articles in the tech-

~nical literature (5,6,7).

These controvercies are a result of an lnadequate under-
standing of the mechanlsm of cavitation damage. Recent advances
in this direction have made it possible to rationalize some of the
conflicts, and to prdpose a mechanical property that most signifi-
cantly characterlzes the cavitation damage resistance of meﬁals
in the absence of corrosion. It 1s the purpose of this paper to
develop the loglic behind such an argument, and to present recentc

substantiating experimental evidence,

One of the basic parameters involved In the testing of ma-
terials fcr cavitatlon damage fesistance is the test duration. The
rate of loss of material depends upon the test duration itself

~even though every other te=st parameter 18 maintalned precisely con-
stant. Recent aralysis showed that there exist four zones of dam-

age with respect to testing time, They are:

1. Ircubation Zone
2, Accumulation Zone
Attenuation Zon=®

Steady State Zone
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A detalled discussion of these zones appears elsewhere (14),
- All the results and concluslons presented herein are limited to =
- the steady state zone of damageyin which the rate of damage does

‘not change with time.

MECHANISM OF CAVITATION DAMAGE

It He now generally establisned that the bubble collapse
energy produces indentatlons on the metal as shown in Figure 1,
The indentations may be produced on the material either by the
impingement of Jjets or by shock waves. The evidence in support
of these methods of dént formation is abundant in the litera-
'“vture (8,9,10,11,12). 1In the absence of corrosion, it 1s quite
reascnable to proceed on the assumption that thesé dents, formed
by mechanﬁcal means, are the maln cause of fracture and loss of

metal.

-Whén such repeated, 1lndenting forces or blows act upon a
metallic surface, one of the following events may occur depending

upon the intensity of impact:

(i) There may not be any permanent d=2formation;
(11) The metal may deform after a certaln number of
. repetitive blows; -
o (111) A permanent deformatlon may develop at the cnset
y' 'f orvthe first blow; and |
J (1v) The metal may 'splash’ and 'wash-out' on the first

o blow itself or after a certaln number of repetitions.
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These possibilitlies can be readily understcod from Filgure 2
which shows schematically the varlation of the internal friction
of metals with strain amplitude in the case of repeated loadings.
In the case ¢f cavitation damage, it 1s reasonabie to assume, for
the sake cf the present argument, that the energy of collopse for
a given frequency, amplitude, and 1jquid varies in a statistlcal
w'manner as shown by the hypcthefical distribution in Flgure 3. As
the straln amplitude 1s 1increased, the mean strain may increase,
the mean number of bubbles possessing adequate energy of collapse
to produce thls strain may increase, or both of these posslbilities
may occur. In any case, the responze of a metal to a given strain
can be qualitatively explained by an equivalent indentation fatigue
diagram as shown in Figure 4, Accordingly, the response of a metal
.Vto a cavitation damage test 1s dependent upon the order of magni-
tude of the straln. In Figure 4 three regions have been designated
to point out the possible material resporses to indentation events
discussed previously. Photographs of the metalllc surfaces which

exhibited tnhe resporse of each reglon are aiso shown.

With the above physical plcture in mird, let us pose the
question: What l!s the characteristic property of a metal that
controls the v¢ro.ded volume as a result of this mechanlcal process?
Otviously this property 1s the energy absorbing capaclity per unit
volume of the mrtal up to fracture when subjected to the repeated
overlappling indentations. At the present state of knowledge, there
is no way to determine thiz quantlty exactly. For thls reason,
gseveral investigators have tried to correlate this quahtity with

most of the commonly krnicwr mecnanical propertles of metals.
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Our superficlal intultion initially suggests that the hard-
ness of the surface may be of utmost importahce. Howéver, when
the physical meaning of hardness is examined critically, wé find
that indentation hardness 1is éssentiaily a measure of the yleld
stress of the material (13). It does not represent the full meaé
sure of the energy required for fracture because it neglects the
elongation of the material up to its ultimate strength. Similar
arguments can be advanced against other mechanical properties such
as yleld stress, ultimate stress and others. An earllier attempt
to correlate the area of the stress-straln diagram up to fracture‘
and the cavitation damage rate proved to be'encouraging (12). The
present investigation is an extenslon of this attempt in a more

detalled manner and confirms the earlier results.

EXPERIMENTAL FACILITY AND TECHNIQUE

The HYDRONAUTICS, Incorporated Magnetostriction Apparatus
was used for these investigations. The details of the equipment
arnd the experimental procedure are outlined in Reference 14, A
double cylinder velocity tr.nsformer replaced the exponential
horn. In Figure 5 are shown the essentlal test parameters of the
magnetostriction apparatus. Simple flat specimens were tested in

distilled water at 27°C (approximately).
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RESULTS AND DISCUSSION

Metals Tested ard Their Mechanlcal Properties

Group 1.
(1)
(11)
(111)
(1v)
(v)

Group 2.
(1)
(11)
(111)
(1v)

(v)
(vi)

For the materials listed under Group 1,
ertles were obtalned from the literature.

" the references varied over a ran_e as shown in Table 1.
strength, ultimate strength, ultimate elongation,

ness and modulus of elastlclity.

grams are a rarity in the literature for these metals.

heat for the.same material.

The following metals were tested.

1100-C Aluminum

Cast Iron

Molybdenum

410 Stainless Steel
304-1 Stainless Steel

1100~-F Aluminum
2024 -T4 Aluminum
1020 Mild Steel
Tobin Bronze
Monel

316 Stalnless Steel

the mechanical prop-
The typlcal values 1n
These

values are avallable only for the common propertles such as yleld

Brinell hard-
Even typical stress-strain dia-
Further,

it should be realized that these properties vary from heat to

However, a prellminary attempt was
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made to correlate the cavitation damage resistance with these me-
chanical properties. For this purpose, the straln energy was

roughly estimated from the following relationship

se'=(T+Y)§ | (1]

where
S is the estimated straln energy,

T 1s the ultimate tensile strength,
€ 18 the ultimate elongation, and
Y 1s the yield strength.

This relationship was used since_the values of T, Y and € were
readlily avallable and gives an approximate value of the area of
the stress-strain dlagram, assumlng it to be a trapezoid. Ariong
the properties considered in this preliminary analysis, the

best correlation was obtainéd with this estimated strain energy
as shown in Figure 6. Since T, Y and ¢ vary over a wide range,
the estimated value of the strain energy also varies over a
range; this range 1s shown in Figure 6 by a'solid line for each
material, while the mean value is shown by a solid circle, Thics

analysis revealed the need for additlional test data.

The second group of six metals was selected for actual tests
and detalled analysis. The englneering stress-strain diagrams
were obtained from the same bar stock of materlal from which the

cavitation test specimens were machined. The stress-straln
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#diagrams for these six materials are given in Figure 7. These
~data were obtalned according to the Federal Test Method Standard
'?TT-, No. 151a with half an inch dlameter tensile specimens of two
. inch gauge length (15). The true stress-strain diagrams.for the
'isix metals are shown in Figure 8. The straln energy was computed

- by the following three methods:

1. Area of the true stress-strain diagram given by the

relationship
1
[ J— '
Se 1+ n) Te'€p (2]

where

Se' is tre true strain energy,

1s the strain hardening factor,
Tf' is the true fracture strength, and
ef 1s the elongation at fracture.

2. Area of the englneering stress-struain diagram ob-

tained by direct measurement.

3. An approximate estimation according to Equation [1].

The reason for employing these three methods is to determine

the percertage deviatlon among the three strailn energy values,

The mechanical propertles of the second group of six metals,
obtained by actual tests, are llsted in Table 2. However, the

Brinell hardness values shown in thls table are typical values
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reported in the literature. It can be seen that the straln energy
values computed by the above three methods agree closely, within

110 percent, with the true strain energy as the standard.

Cavitation Damage Resistance

All of these metal.s were tested for their cavitation damage
resistance according to the procedures outlined in detail 1n
Reference 14, Essentially, the procedure 1s to test each 6f the
metals under a given set of experimental conditions through the
four zones of damage, namely, incubation zone, accumulation zone,
attenuation zone and steady state zone. It is of interest to
note that all the metals which were tested exhibited these zones.
The specimen that had reached the steady state zone was used to
obtain the relationship between the rate of volume loss and the
displacement amplitude as shown in Figure 9. The reciprocal of
the rate of volume loss 1s defined as the cavitatibn damage re-
sistance of a material. The cavitation damage resistance at a

3

given amplitude (2 x 10 “cm) in the steady state zone was plotted
against the various mechanical properties of the metals as shown
in Pigures 10 through 15. The mechanical proberties considered
here ére strain energy, ultimate tenslle strength, yleld strength,
Brinell hardness, ultimate eiongation and modulus of elasticity.
Bocth groups of metals have been Included for this correlatlon.
The values of lirnear correlation factor for each of the above me-

chanical propertiec are tabulated below.
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Mechanlcal Property Correlation Factor
Jdtrain Energy 0.91
Ultimate Strength 0.79
Yield Strength 0.65"
Brinell Hardness 0.51
Modulus of Elasticity 0.49
Ultimate Elongation 0.48

The correlation factor, r',for two variables, x and y, is

calculated from the followling formula:

Vo - o 10y - ()]

where

n 18 the number of polnts In an x, y plane.

* This 1s based on ten sample polints since the yleld strength

for cast iron is not avallatble.
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This analysis clearly shows that the most significant linear
correlation 1s obtained with the strain energy of the material.
It follows from this result that the cnergy absorbing capacity
of a metal characterizing the cavitation damage resistance 1is

largely determined by the strain energy.

Limitations

1. This analysis 1s confined to six common propertles
of metals. It 1s rot impliea that there is no other property

more significant than strain energy.

2. This analysis 1s 1imited to the steady state zone.
In the earlier zones, the interaction of the strain hardening
exponent and the surface roughness will have to be taken into

account,.

. 3. No superposition of a corrosive environment is
consldered in this analysis. The interaction of a corrosive

environment on the fatigue properties of metals 1s important.
p 1

Intensity of Cavitation Damage

One of the immediate uses of thic c¢orrelation 1. to estimate
the 1Intensity of cavitation damage as a functlon of displacement
amplltude. The Intensity has been defined as the power aboorbed

per unit area of the material (i6) and 1s gliven by
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where
I 1is the intensity of cavitation,
r 1s the rate of volume loss,

Ae 18 the area of erosion, and

Se i1s the stralin energy.

It can be seen that the intensity of cavitation damage for a
given amplitude is given by the reciproczal of the slope of the
line in Figure 10 divided by the area of erosion. .The hest fit
lines by the least square method for each amplitude abe shown in
Figure 16. The intensity, thus computed, varies as the square
of the amplitude for the experimental conditlons in the steady

state zone (Filgure 17).

CONCLUGSIONS

The following conclusions are draswn as a resuilt of these

investigations
1. Among the mechanical properties investigated to

characterize the energy otsorblng capacity of metals under the
repeated indentatlons produced by cavitation damage, the most
significant correlation 1s obtalned with the straln energy of the
metal, where the straln erergy 1s defined as the area cf the‘
stress-gtraln dlagram up to fracture In a simple tensile test.
This concluslion is limited to the steady state zone of damage

in a non-~orrosive environment,
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2. The above relationship leads directly to the esti-
mation of the intensity of cavitation damage. According to this
estimate the Intensity varies as the square of the displacement
amplitude in the steady state zone under the present experimental

condlitions.
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TABLE 2 - Mechanical Properties of 3Six Metals from Actual Tenslile Tests

True
Ultimate Hard- Den- Ultimate Strain True True Engineering Xstimated
Modulus of Yield Tenai’e ness #ity Tensile Hardening Ultimate Ultimate Strain Strain Strain

Material Units Elasticity Strength Strength BHN g/cm® Strength Factor FElopgation m—oﬂm-n»os Energy Energy Energy
316 psi 25 z 18 68 x 10 91.4 x 10° 12.6¢ x 10* 39.0 x 16* 37.0 x 10* 35.0 x 10"
Stalnless . 160 7.98 0.16 11 36
Steel dynes/

o’ 172 x 10'° 469 x 10° 630 x 10 86.8 x 1¢ 269 x 10" 255 x 10" 281 x 10"

pel 26 x 10 77.9 x 16 97.9 x 10 11.2 x 10* 28,7 210" 3.7 x 10" 3.7 x 10*
Monel _ 126 8.8% 0.088 27 2

daynes/’

o’ 179 210°° S37 x 10" 675 x 107 77.2 x 1 170 x 10" 163 x 10" 153 x 10"
1020 m114 pst 24 x 10 91.0 x 10* 112.6 x 10 14,6 x 10° 14.9 x 10* 12.5 £ 1¢* 12.2 x 10®
Steel 130 7.85 0.13 12 11.5%

dynes/

o’ 16% x 10** 627 x 100 7762 10 101 x 1 103 x 100 86 1 x 10° B82.1 x 10'
Todin pel 12 2 1¢° §7.7 x 10* 72.0 x 10° 8.3 x 10* 17.¢ x 10* 17.8 x 10® 16.9 x 10"
Proanxe 12% 8.8 0.102 26 23.5

dynes/

o’ 82.7 x 10"* 398 x 10" 496 x 10" 7.2 x 10" 121 x 10 123 x 10" 116 x 10
2024 pat 10 x 1 50.4 x 10* 70.6 x 10° 8.1 x 10* 13.8 x 10" 13.7 = 10* 13.0 x 10"
Aluminum 120 2.70 0.143 1.5 19.%

aynes/

o 68.9 2 10*° 347 x 107 486 g 107 5.8 x 10" 95 x10" 9V x 100 89.6 x1¢
1100-F pss  9z10 19.8 x 16 22.3 x 10 2.6 x 10* M2x10® 3.2x10 Mix10
Aluminm A2 2.70 , 0.065% 10.% 17.2

nu.:..\ g.onuo..dmnuo.uu,naq S.unuq 8.eu5.8.on5.3.-n8.
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